Transgenic expression of dominant-negative Fas-associated death domain protein in beta cells protects against Fas ligand-induced apoptosis and reduces spontaneous diabetes in nonobese diabetic mice.
نویسندگان
چکیده
In type 1 diabetes, many effector mechanisms damage the beta cell, a key one being perforin/granzyme B production by CD8(+) T cells. The death receptor pathway has also been implicated in beta cell death, and we have therefore generated NOD mice that express a dominant-negative form of the Fas-associated death domain protein (FADD) adaptor to block death receptor signaling in beta cells. Islets developed normally in these animals, indicating that FADD is not necessary for beta cell development as it is for vasculogenesis. beta cells from the transgenic mice were resistant to killing via the Fas pathway in vitro. In vivo, a reduced incidence of diabetes was found in mice with higher levels of dominant-negative FADD expression. This molecule also blocked signals from the IL-1R in culture, protecting isolated islets from the toxic effects of cytokines and also marginally reducing the levels of Fas up-regulation. These data support a role for death receptors in beta cell destruction in NOD mice, but blocking the perforin/granzyme pathway would also be necessary for dominant-negative FADD to have a beneficial clinical effect.
منابع مشابه
Contribution of Fas to diabetes development.
Fas (Tnfrsf6, Apo-1, CD95) is a death receptor involved in apoptosis induced in many cell types. Fas have been shown to be expressed by insulin-producing beta cells in mice and humans. However, the importance of Fas in the development of autoimmune diabetes remains controversial. To further evaluate the importance of Fas in pathogenesis of diabetes, we generated NOD mice (nonobese diabetic mice...
متن کاملActivation-Induced Apoptosis in T cells: Effect of Age and Caloric Restriction
We have previously shown that the proliferative response of T cells to antigenic or mitogenic stimulus decreased with age and that caloric resection (CR) attenuated the age-related decline in proliferation and IL-2 expression. Because activation-induced apoptosis is known to regulate cell proliferation and eliminate the high number of activated cells during an immune response, it was of interes...
متن کاملFas is detectable on beta cells in accelerated, but not spontaneous, diabetes in nonobese diabetic mice.
Fas (CD95) is a potential mechanism of pancreatic beta cell death in type 1 diabetes. beta cells do not constitutively express Fas but it is induced by cytokines. The hypothesis of this study is that Fas expression should be measurable on beta cells for them to be killed by this mechanism. We have previously reported that up to 5% of beta cells isolated from nonobese diabetic (NOD) mice are pos...
متن کاملThe Role of Fas in Autoimmune Diabetes
Immunologically privileged sites express Fas ligand (FasL), which protects them from attack by activated T cells that express Fas and die upon contact with FasL. In an attempt to protect nonobese diabetic mice (NOD) from autoimmune diabetes, we made FasL transgenic NOD mice using the beta cell-specific rat insulin-1 promoter. Surprisingly, these transgenic mice showed heightened sensitivity to ...
متن کاملVirally induced inflammation triggers fratricide of Fas-ligand-expressing beta-cells.
Tissue-specific expression of Fas-ligand (Fas-L) can provide immune privilege by inducing apoptosis of "invading" lymphocytes expressing Fas. However, accelerated diabetes has been reported in transgenic mice expressing Fas-L in islets (RIP-Fas-L) as a result of Fas-dependent fratricide of beta-cells after transfer of diabetogenic clones. Here we studied whether Fas-L could protect islets from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 175 1 شماره
صفحات -
تاریخ انتشار 2005